The September ORACCA meeting will be held at the NW College of Construction, 8111 NE Holman St, Portland, OR 97218 at 11:30AM, Thursday, September 13, 2018.

This meeting is sponsored by Geary Pacific and lunch is provided by Emerson/White Rodgers

Our presenter is Tim Burke Educational, Applications and Technical Services Manager | Emerson | White Rodgers. His presentation will deal with Dual Fuel Heat Pumps and Staging Options. This presentation qualifies for 1.0 NATE CEU and 1.0 CCB credit.

This training explains thermostat control choices available to a building designer in controlling the balance point staging and operation of a dual fuel heat pump to enhance energy efficiency and occupant comfort.

The course is taught from an HVAC building design standpoint. This course will give practical information that can be used by building design consultants in the design of Dual Fuel Heat Pump applications.

After completing this course, attendees will have an understanding and be able to apply knowledge in the application of:

1- Dual Fuel Heat pump system terminology
2- Manual “J”, bin temperature, and equipment impacts on OAT balance point
 a. Balance point calculations
3- Outdoor Sensors versus Algorithm Logic
 a. Comparative between OAT sensors and logic, Pros & Cons
4- Impact of comfort versus economy of operation
5- Heat Pump Defrost and impacts on performance and cost of operation

Join us for lunch and a presentation vital to sales personnel, technicians and owners alike.

What?
Emerson/White Rodgers
Design Criteria

When?
11:30AM - 09/13/18
NW College of Construction
8111 NE Holman St, Portland, OR 97218
Do you know the code for gauges and what gauge for what LB of gas and what to pump it to and for how long?

Well now you do! It is listed here below and on the ORACCA website. Use this link to find it on the net. http://www.oracca.org/gas-gauge-code-clarification/ Compliments of Loren Watts.

Sections G2418.4 & G2418.4.1 of the 2017 Oregon Residential Specialty Code (ORSC) and Sections C406.4 & C406.4.1 of the 2014 Oregon Mechanical Specialty Code (OMSC) state in part that, “...Mechanical gauges used to measure test pressures shall have a range such that the highest end of the scale is not greater than five times the test pressure.” “Gas-piping systems under 14 inches water column (1/2# gas typ) shall be tested at a pressure not less than 10 pounds per square inch gauge. Test pressures shall be held for not less than 15 minutes with no perceptible drop in pressure. For welded piping and piping carrying gas at pressures exceeding 14 inches water column pressure (2# typ), the test pressure shall be at least 60 pounds per square inch for not less than 30 minutes.”

If the test gauge manufacturer wants a higher scale on their gauge to test a 60 psi pressure than an 80# gauge would be acceptable per the above code but it’s not a requirement in code that an 80# gauge is required. Usually we see 30# gauges on a 1/2# system and 60-90 psi gauges o the 2# systems.

Standard pressure gas lines need 12 psi for 15 min, 2lb gas lines need 60 psi for 15 min. so if you use a 30 Lb gauge you can leave it at 15 psi for standard pressure, if you use a 60 PSI gauge for 2 LB then you need to max it out at 60 PSI or use a 90 PSI gauge and put it at 65 PSI.
SPONSOR OF THE MONTH

GP SUPPLY

Lindsey Axberg
4286 NE 185th Dr.
Portland, OR. 97230
503-262-8202

Not a member? We'd love to serve you, too.
For additional information visit www.oracca.org or call 360-834-3805. Email dick@oracca.org
Planning Ahead

MEETING DATES

A. January 18 - Codes Update & Utility Update@NW Natural, Sherwood - NATE CEU (1.0), CCB CE (1.0)
B. February 1 - Honeywell @ MarHy - NATE CEU (1.0), CCB CE (1.0)
C. March 1 - Cyber Security Presentation @ YORK, Tigard, OR- NATE CEU (1.0), CCB CE (1.0)
D. April 19 - Codes Update, Mfg. Reps Presentation @ NW Natural, Sherwood - NATE CEU (1.0), CCB CE (2.0)
E. May 3 - Training Day @ Johnstone Corp. - NATE CEU (8.0)
F. June 7 - AIREFCO Presentation @ TBD - NATE CEU (1.0), CCB CE (1.0)
G. June 9 - Shoot Out - Canby Rod & Gun Club
H. July 16 - Golf Tournament - Oregon City Golf Course
I. July 19 - Codes Update@NW Natural, Sherwood - NATE CEU (1.0) & CCB CE 2.0
J. August - No Meeting
L. Sept. 13 - Geary Pacific (Emerson/White Rodgers) Presentation @ NW Coll. of Constr. - NATE CEU (1.0), CCB CE (1.0)
K. October 18 - Codes Update@NW Natural, Sherwood - NATE CEU (1.0) & CCB CE 2.0
L. Nov. 1 - Thermal Presentation @ NW Coll. of Constr. - NATE CEU (1.0), CCB CE (1.0)
M. Dec. 6 - Xmas Party @ Lennox

Visit our Website for information on the association’s activities.
www.oracca.org

ORACCA
Oregon Air Conditioning Contractors of America
P.O. Box 87907
Vancouver, WA. 98687-7907
360-834-3805

Not a member? We’d love to serve you, too.
For additional information visit www.oracca.org or call 360-834-3805. Email dick@oracca.org
ORACCA Monthly Meeting
Geary Pacific Supply

Join Us for Emerson/White-Rodgers ORACCA Monthly Meeting

Instructor: Tim Burke | Educational, Applications and Technical Services Manager | Emerson | White-Rodgers

Date: Thursday, September 13, 2018
Time: 11:30am - 1:00pm
Location: Northwest College of Construction
8111 NE Holman St
Portland, OR 97218
*** Room 101 ***

Lunch provided by Emerson/White-Rodgers

Dual Fuel Heat Pumps and Staging Options

1.0 Hours

After completing this course, attendees should understand the theory of Dual Fuel applications, design considerations and their impact on Balance Point Calculations.

This training explains thermostat control choices available to a building designer in controlling the balance point staging and operation of a dual fuel heat pump to enhance energy efficiency and occupant comfort.

RSVP: Lindsey Axberg 503-262-8202 Email: Lindsey@gearypacific.com

The course is taught from an HVAC building design standpoint. This course will give practical information that can be used by building design consultants in the design of Dual Fuel Heat Pump applications.

After completing this course, attendees will have an understanding and be able to apply knowledge in the application of:

1. Dual Fuel Heat Pump system terminology
2. Manual “J”, bin temperature and equipment impacts on OAT balance point
 a. Balance point calculations
3. Outdoor Sensors versus Algorithm Logic
 a. Comparative between OAT sensors and logic, Pros & Cons
4. Impact of comfort versus economy of operation
5. Heat Pump Defrost and impacts on performance and cost of operation

Visit Us on the Web at: www.gearypacific.com